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The structure and dynamics of waves in a vapor— liquid medium are investigated on the
basis of a model equation for wave propagation in a liquid containing vapor bubbles. The
results of the calculations are compared with the experimental pressure profiles.

1. A two-temperature model has been proposed [1l] for the propagation of disturbances
in a liquid existing near the saturation line and containing vapor bubbles. On the assump-
tion that the thermodynamic equilibrium condition at the bubble— liquid interface is pre-
served in wave transmission, an equation has been derived in [1l], describing the one-way
propagation of a pressure wave:
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where co = (Ypo/po o) */? is the sound velocity in the vapor— liquid medium; B = R3/6¢o(1 —
¢®o), dispersion parameter of the medium; 7., density of the vapor; L, latent heat of vapori-
zation; qr, heat flux from the bubble into the liquid; @, nonlinearity parameter in the wave.

It has been assumed in the derivation of Eq. (1.1) that the heat flux g, into the bubble
is much smaller than qp. This assumption is allowable for iz <<} and vaz/a, > 1, where },,
A2 are the thermal conductivities of the liquid and the vapor and a,,a. are the thermal dif-
fusivities of the liquid and the vapor.

The heat flux qp in the model of {1] is written in the Duhamel integral form {2}
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The approximation (1.2) postulates not only weak mobility of the bubble boundary, but
also the fact that the thermal wavelength I = v2a,/w is much smaller than the distance be-
tween the bubbles. When I is of the order of the acoustic wavelength Za, many bubbles fit
within the wavelength, and the model of [1] does not work. This situation corresponds to the
problem of the sound velocity in the vapor—1liquid medium considered in [3] and the wave-
propagation model formulated in [4]. In this sense the proposed model of [1] is a high-fre-

quency model.
Assuming that the wave amplitude is small and the compressibility of the vapor can be

neglected, we can relate the temperature perturbation AT to the pressure perturbation ac~
cording to the Clausius—Clapeyron equation and rewrite the heat flux (1.2) in terms of

the pressure perturbation:
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Then after certain estimates and simplifications [1] Eq. (1.1) acquires the form
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Equation (1.3) is generalized to the case involving dissipation due to the acoustic
radiation viscosity by analogy with [5]. The left-hand side of Eq. (l.4) acquires a term
of the form nd%p/9x?, where n is the effective dissipation coefficient.

With the introduction of the dimensionless variables
= ((y + 1)/2%)eAp/py, uy=((y + 1)/29)e,Apy/ Py I= ugly, 3y = wliy, v =1/ty, §= x/l

(te is a characteristic time) Eq. (1.3) acquires the form
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where

Re = uylln; o = Puy/Pey; Pe = uyliay;

M = uy/ey; 62 = szg/Tsop‘i’cﬁ

¢z coincides formally with the expression for the sound velocity in the vapor— liquid mix-
ture in [3].

For water containing vapor bubbles at one atmosphere Pe ~ 10°, so that the term propor-
tional to u can be neglected. The transition to the variables 6 = 10 and ¢ = £0 completes
the solution of the problem of the principal criteria governing the wave process in the

liquid containing wvapor bubbles:
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where Ja = cpATol/Loz is the Jakob number.

(L.5)

As W~ 0 the propagation of waves in the liquid containing bubbles is determined, as in
gas— liquid systems, by the values of o and Re, and the involvement of phase transitions in
the wave is characterized by the criterion W. The latter varies as a function of the initial
pressure po and the physical parameters of the wave: Pe.

2, Equations (1.4) and (1.5) are the Burgers—XKorteweg—de Vries (BKdV) relaxation equa-
tions. The right-hand sides of these equations contain a relaxation integral. Unlike the
BKdV relaxation equation derived in [6] for the modeling of waves in a liquid containing gas
bubbles with heat transfer, the integral has a ''square root" kernel, rather than an exponen-
tial kernel as in the case of [6]. With an exponential kernmel it is possible to determine
explicitly the characteristic relaxation time to and, by differentiating, to eliminate the
integral, arriving at a higher—-order equation. The ''square root" kernel corresponds to an
infinite relaxation time and does not permit the transition to a higher-order differential
equation without an integral.

The propagation of waves in a liquid containing vapor bubbles is modeled on the basis
of Eqs. (1.4) and (1.5) with the application of numerical integration to the experiments of
[7]. Equation (l.4) is integrated numerically for Re - « according to an asymmetric differ-
ence scheme [8]:
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where € is the coefficient in front of the integral in Eq. (1.4) and I?+1 s 1s an approxi-
mation of the integral, written in the following form for the net-point (computing grid)
representation of the function u(r, £)
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where n = T/AT.

In Eq. (2.1) At and At are related by the stability condition At < A£3%0%/8 and the
approximation condition 1.5Af/AT = M *.

The scheme (2.1) is implemented as a t-explicit scheme, making it possible to compute
the values of the functiom u(t, &) directly on a four-word array with respect to £.

The numerical solutions of Egq., (1.5) are found by an analogous procedure. The opera-
tion of the scheme is verified in three stages. In the first stage we set £ = 0, whereupon
Eq. (1.5) goes over to the Korteweg—de Vries equation, which has well-known numerical solu-
tions [9]. 1In the second stage, to verify expression (2.2) we compare the numerical solutlon

of the problem

1
du ouldt . 0 for t =0,
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with its analytical solution

eV aMz
u (t, .l') = erfe (m).

In addition, we compare the numerical solution of the linearized equation (1.5) with the
solution obtained by the fast Fourier transform method from the derived dispersion relation
[8]. In every case the error does not exceed 2%.
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The values of the coefficients of Eq. (1.5) are calculated from the initial conditions
of the experiments [7, 9], and the equations are solved at distances X; corresponding to the
coordinates of the sensors,

3. The results of the calculations are compared with the experimental pressure profiles.
Figure 1 shows the results of calculations of a disturbance of the "shock wave" type; here
and in the other figures the dashed curves represent the experimental results (o + o, W =
62+ 107, M = 0.67).

Figure 2 shows the results of the calculations for the structure of a wave of finite
extent and compares them with the experimental results (¢ = 26.5, W = 0.67, M = 0.67).

The results of the calculations are conveniently represented in the form of a graphical
tableau, the coordinates of which are the characteristic parameters W, ¢ of the wave process
in a liquid containing vapor bubbles (Fig. 3); this graphical representation is similar to
[71.

The numerical modeling of Eqs. (1.4) and (1.5) and the comparison of the results of the
calculations with the experimental data show that the propagation of low-intensity waves in
a liquid containing vapor bubbles is adequately described by the Burgers—Korteweg—de Vries
equation with a "square root" kernel.
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